Paper Review

6 February 2025

It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization

Bingdong Li¹, Zixiang Di¹, Yanting Yang¹, Hong Qian¹, Peng Yang²,

Hao Hao³, Ke Tang², Aimin Zhou¹

¹East China Normal University

²Southern University of Science and Technology

³Shanghai Jiao Tong University

bdli@cs.ecnu.edu.cn, {51265901113, 51255901098}@stu.ecnu.edu.cn,

hqian@cs.ecnu.edu.cn, yangp@sustech.edu.cn,
haohao@sjtu.edu.cn, tangk3@sustech.edu.cn, amzhou@cs.ecnu.edu.cn

Why and What This Paper is About?

- Background & Current Gap
 - Finetuning is expensive, model merging is more promising
 - But, model merging requires profound knowledge and intuition on how to balance the weights
 - Or you can conduct grid search (expensive, defeat the purpose)

Motivation

- Automatically finding the 'perfect' weight for model merging, without sacrificing one or the other
- This is done using multi-objective optimization

Why and What This Paper is About?

- Main Contributions
 - 1. Formalizing model merging as a multi-objective optimization problem
 - 2. Automated and enhanced acquisition strategy
 - Basically, how to search the best configuration faster
 - 3. Additional optimization objective
 - To make sure that the model generalize on different tasks
 - Reduce overfitting

Methods

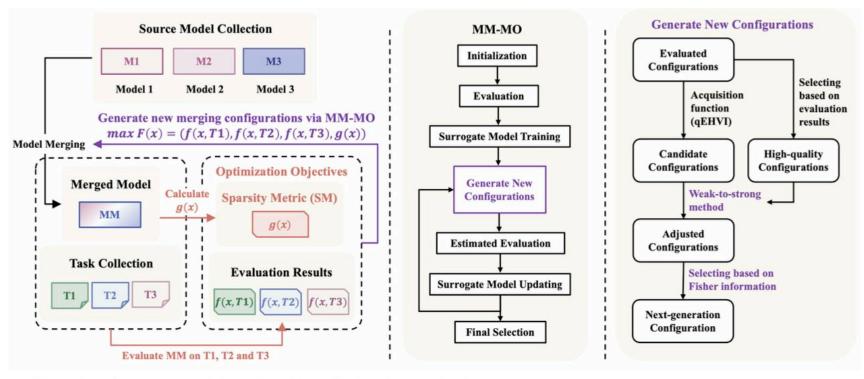
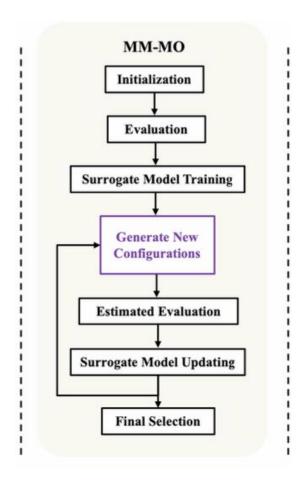
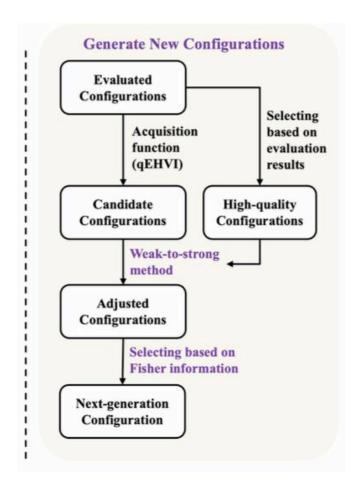


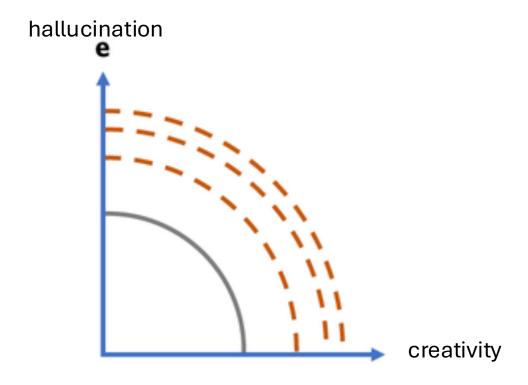
Fig. 3. An illustration of automated model merging with multi-objective optimization (MM-MO).

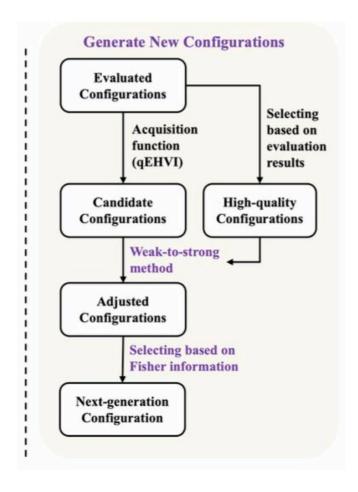


- We start with a merged model using TIES and DARE
 - TIES: Trim redundant parameters, resolve conflicting signs, take average for parameters with the same sign
 - DARE: Randomly drop parameters according to a drop rate and rescale the remaining parameters
 - In the paper, they used qwen1.5-chat, liberated-qwen (specialized in coding), firefly-qwen (specialized in Chinese)
- Next, we initialize various random configurations
- For each of the model, we evaluate with the 2 tasks you want to optimize for
 - In the paper, they use GSM8K (math tasks) and C-EVAL (Chinese tasks)
 - Plus sparsity metric
- Use the results to train a surrogate model
 - This surrogate model will aim to predict the evaluation results from different configurations
- Then, use this model to predict which configuration is best

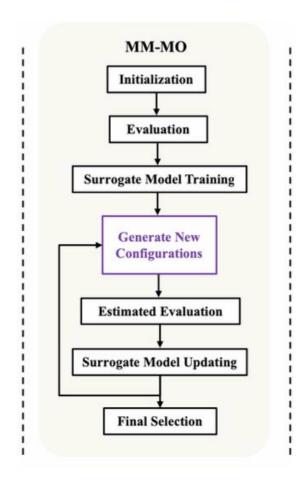


- Using the evaluated configurations, we use qEHVI (q-Expected Hypervolume Improvement) to determine the next best configuration
 - Haven't really look deep into the math, but it quantifies how much a configuration can expand the existing Pareto frontier
 - Need the surrogate model to determine the value
 - End result: a bunch of candidate configurations





- Now, we have no narrow down the candidate to find the best ones
- They used weak-to-strong method
 - From existing evaluated configurations, pick 5 of the best ones
 - Apply differential evolution to the above 5 (why, I have no idea)
 - Then apply stochastic perturbation on the candidate configurations. This replaces some of the candidate configurations parameter with those obtained during DE (why, I also have no idea)
 - Not particularly sure why are we doing this...
 - But, apparently it can help improving the configurations
- With the improved configuration, we need to prioritize the ones with least Fisher information
 - Fisher info quantifies the uncertainty of certain configurations
 - Less certain spots are prioritized as it provides most learning about the search space
 - End result: bestest next configuration to be evaluated



- After evaluating the bestest configurations using our two tasks (GSM8K + C-EVAL), we update the surrogate model
- Iteratively find the next bestest configurations for 5 iterations
- The best performing configuration will be selected last

- Key Findings
 - MM-MO method significantly outperforms existing model merging approaches

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MERGING METHODS AND SINGLE MODELS. (MODEL SIZE: 7B PARAMS)

Merging Method	Models	Average Score	C-EVAL	GSM8K	HellaSwag	HumanEval	MBPP	MMLU	WinoGrande
Single Model 1	Qwen1.5-7B-Chat	56.46	68.7	54.59	68.13	46.95	34.20	60.06	62.59
Single Model 2	Liberated-Qwen1.5-7B	57.29	69.7	53.30	71.02	48.78	38.80	58.84	60.62
Single Model 3	firefly-qwen1.5-en-7b	51.32	70.0	49.81	65.69	33.54	28.40	51.66	60.14
Linear (Model Soup)	Single Model 1 + 2 + 3	58.88	71.1	54.89	72.72	50.61	39.80	60.80	62.27
Task Arithmetic	Single Model $1 + 2 + 3$	56.67	70.1	55.50	69.54	46.34	37.80	55.04	62.35
Dare + Task Arithmetic	Single Model $1 + 2 + 3$	58.38	69.8	55.27	69.97	51.22	39.40	60.23	62.75
TIES	Single Model $1 + 2 + 3$	53.32	65.7	53.15	69.58	34.76	29.00	58.05	62.98
DARE + TIES	Single Model $1 + 2 + 3$	57.78	69.5	55.72	69.23	49.39	37.80	60.06	62.75
Model Breadcrumbs	Single Model $1 + 2 + 3$	58.56	70.3	56.10	70.91	49.39	40.60	60.47	62.12
Model Breadcrumbs + TIES	Single Model $1 + 2 + 3$	58.41	70.2	55.72	70.59	50.00	39.80	60.35	62.19
DARE + TIES w/ MM-MO (Ours)	Single Model 1 + 2 + 3	60.97	71.9	57.77	74.44	55,49	42.20	60.81	64.17

Key Findings

- Adding sparsity metric improves generalization
 - MM-MO performs better than other model merging method in non-trained fields like common sense and reasoning
 - MM-MO enhances the overall potential of the model, instead of optimizing in specific given tasks

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MERGING METHODS AND SINGLE MODELS. (MODEL SIZE: 7B PARAMS)

Merging Method	Models	Average Score	C-EVAL	GSM8K	HellaSwag	HumanEval	MBPP	MMLU	WinoGrande
Single Model 1	Qwen1.5-7B-Chat	56.46	68.7	54.59	68.13	46.95	34.20	60.06	62.59
Single Model 2	Liberated-Qwen1.5-7B	57.29	69.7	53.30	71.02	48.78	38.80	58.84	60.62
Single Model 3	firefly-qwen1.5-en-7b	51.32	70.0	49.81	65.69	33.54	28.40	51.66	60.14
Linear (Model Soup)	Single Model 1 + 2 + 3	58.88	71.1	54.89	72.72	50.61	39.80	60.80	62.27
Task Arithmetic	Single Model $1 + 2 + 3$	56.67	70.1	55.50	69.54	46.34	37.80	55.04	62.35
Dare + Task Arithmetic	Single Model $1 + 2 + 3$	58.38	69.8	55.27	69.97	51.22	39.40	60.23	62.75
TIES	Single Model $1 + 2 + 3$	53.32	65.7	53.15	69.58	34.76	29.00	58.05	62.98
DARE + TIES	Single Model $1 + 2 + 3$	57.78	69.5	55.72	69.23	49.39	37.80	60.06	62.75
Model Breadcrumbs	Single Model $1 + 2 + 3$	58.56	70.3	56.10	70.91	49.39	40.60	60.47	62.12
Model Breadcrumbs + TIES	Single Model $1 + 2 + 3$	58.41	70.2	55.72	70.59	50.00	39.80	60.35	62.19
DARE + TIES w/ MM-MO (Ours)	Single Model 1 + 2 + 3	60.97	71.9	57.77	74.44	55.49	42.20	60.81	64.17

- Key Findings
 - MM-MO outperforms evolutionary model merge

TABLE VI
PERFORMANCE COMPARISON OF MM-MO AND EMM. (MODEL SIZE: 7B & 13B PARAMS)

Merging Method	Models	C-EVAL	MMLU	GSM8K	Human Eval	MBPP
Single Model 1	Qwen1.5-7B-Chat	68.7	60.06	54.59	46.95	34.20
Single Model 2	Liberated-Qwen1.5-7B	69.7	58.84	53.30	48.78	38.80
Single Model 3	firefly-qwen1.5-en-7b	70.0	51.66	49.81	33.54	28.40
Single Model 4	WizardLM-13B	34.8	51.47	55.50	35.98	30.60
Single Model 5	WizardMath-13B	30.2	51.27	60.50	14.02	25.20
Single Model 6	llama-2-13b-code-alpaca	33.2	52.99	29.72	21.95	30.00
DARE + TIES	Single Model 1 + 2 + 3	69.5	60.06	55.72	49.39	37.80
DARE + TIES w/ EMM	Single Model $1 + 2 + 3$	68.0	58.99	62.02	34.76	29.60
DARE + TIES w/ MM-MO (Ours)	Single Model $1 + 2 + 3$	71.9	60.81	57.77	55.49	42.20
DARE + TIES	Single Model 4 + 5 + 6	37.7	55.57	60.73	33.54	33.00
DARE + TIES w/ EMM	Single Model $4 + 5 + 6$	32.5	52.16	60.05	34.15	25.20
DARE + TIES w/ MM-MO (Ours)	Single Model $4 + 5 + 6$	38.0	56.36	62.85	36.59	36.80

- Key Findings
 - qEHVI is the most effective acquisition function for multi-objective optimization

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT ACQUISITION FUNCTIONS

Method	Average Score	C-EVAL	MMLU	GSM8K	Human Eval	MBPP
DARE + TIES	54.49	69.5	60.06	55.72	49.39	37.80
MM-MO / qNEHVI	56.09	71.6	61.07	57.16	50.61	40.00
MM-MO / qNParEGO	55.09	70.3	60.45	59.74	46.95	38.00
MM-MO / qEHVI (Ours)	57.63	71.9	60.81	57.77	55.49	42.20

Analysis

Strengths

- Interesting approach to model merging, very technical
- Relevant, find the 'sweet spot' in the Pareto front
- Strong experimental validation, even with small models
- I like how it improves general ability of the LLM as well

Weaknesses

- Requires the source models to be homologous to ensure compatibility
- Very complex. Not sure how to implement.
- No code given

Questions

- 1. Do you think it will be hard to implement? Not feasible?
- 2. Not sure about how qEHVI works
 - AFAIK, we want to maximize the task evaluations and minimize the sparsity metric
 - Where and how is this objective relayed to qEHVI?